1. 倾述林首页
  2. 读后感

奇怪的数学文化读后感聚集80句-读后感

篇一:《奇妙的数王国》读后感

《奇妙的数王国》是一本关于数学的故事书,书里有10个故事:奇妙的数王国、猪八戒新传、长鼻子大仙……都很有趣。

我最喜欢“奇妙的数王国”,故事是这样的:一天,小强和他的弟弟小华来到了数王国做客,游览数王国时遇到了一点小麻烦,一次大地震,小数们被震变了形,小强把它们治好了。这本书我很喜欢。

篇二:《奇妙的数王国》读后感

今天,我读了一本名叫《奇妙的数王国》,这本书非常好看,讲了许多的数学童话,寓教于乐,能激发我们对数学的兴趣,里面的故事很有趣,也很搞笑。

说了猴法官和熊警探联合破案,除暴安良,保护动物的故事,用智慧与狐狸等狡猾的动物轮番交战,最后以猴法官的机智勇敢而告终。

从这本书我懂得了:做班干部,一档尽到自己应该做的,不是拿权力来约束别人,要起带头作用。

做一个品学兼优的好孩子。

篇三:《奇妙的数王国》读后感

这本书的作者是著名科普作家李毓佩,这本书还是一套丛书中的一本,一套共22本呢!这本里包含《奇妙的数王国》、《猪八戒新传》、《长鼻子大仙》、《熊法官和猴警探》、《梦游“零王国”》、《有理数和无理数之战》、《小数点大闹整数王国》、《7和8的故事》和《鹰击长空》十篇故事。

这本书的故事一个个都既形象又生动,这使得我废寝忘食地看它。看完这本书后,我对数学的兴趣更浓厚了,更爱看李毓佩的数学故事了,更想要数学故事书了。

你想要这本书吗?如果想,就去买一本吧!

篇四:《奇妙的数王国》读后感

在寒假放假期间回广东的路上,我看了一本“奇妙的数王国”,我发觉原来数学也是这么有趣,原来数学也并不枯躁乏味的,原来数学中的每一个数也是有生命的.,原来数学中也可以找到童话故事中的奇幻情节。

读了这本书,我认识到了毕达哥拉斯,他是古希腊的数学家; 我认识了费马,他是17世纪法国的数学家;我认识了欧拉,他是18世纪瑞士数学家;我还认识了16岁的巴格尼,他是1886年的意大利数学家,原来他们都发现了相亲数。

再往后看,哈哈,我又发现了一个好玩的东西,它叫作“小数点”,原来,一旦被小数点点上的数后,比1小的还有千千万万个数,如“0。678,0。356,0。442”,这些都是比1小的哦。

原来,在课外书上数学也可以学到这么多东西。

篇五:《奇妙的数王国》读后感

自从我读了这本 “ 奇妙的数王国 ” 之后 ,我就学会了许多许多的关于数学的知识。

在这本书里面 ,通过用童话故事和有趣的讲解关于数学方面的知识 ,让我们了解到很多的数学知识 ,读了一个故事后 ,就会让我知道了数学的一个知识 ,当我做这个题的时候 ,就知道了这题是怎么做的 ,当我把这整本书读完后 ,我就学会了很多很多的数学的知识 ,比如 :在字母表中 ,字母 “a ” ,在数学里 ,它是一个重要的人物 ,它想代替哪个数 ,就可以代替那个数 ;零乘以任何不是零的数都得零……

在这本书中 ,让我明白了一个道理 ,数学其实并没有那么的不难 ,如果你用心的去学 ,就会觉得数学题根本不难 ,而且 ,非常有趣 。

篇六:《奇妙的数王国》读后感

读了《奇妙的数王国》,我感到了数学的乐趣,这本书将抽象、枯燥的数学知识变得有趣。什么事都离不开数学。

这本书讲了:小强和小华一起解数学难题,让数王国变得平静。这本书中还有0国王,1司令,2司令,还有许多有趣的故事“零国王苦斗跳蚤 ”、“速算专家数8 ”、“追杀小数点”、有理数和无理数之战、神奇的小数点等好玩的故事。

作者讲的故事深深的印在我的脑海里,读完这本书,我对数学有了更深刻的认识,原来我认为枯燥无味的数学,竟然变得如此有趣,吸引我看下去,小朋友们,快来读这本书吧!从这本书中你们可以热爱数学。

篇七:《奇妙的数王国》读后感

假期里我读了《奇妙的数王国》这本书,书中有很多数学故事,使我受到了启发,我的数学成绩不是很好,看了这本书,我渐渐的对这些数字有了很大的兴趣, 并和数字们交上了朋友。

小华,小强,小毅等个个都是数学天才,整数王国、分数王国、小数点王国,三角形家族、四边形家族,创造了一个又一个的数字故事,数字7和数字8度过了一个奇妙的历险。

在这里孙悟空竟然也有数学问题,孙悟空学好了数学,师徒四人乘着数学往西天取经去。这些数字真是太神奇了!

我喜欢小小的字母a。因为它什么数字都能变得出来,连最奇妙的∏都拿它没办法,字母a的小尾巴一翘一翘的,真可爱,我也想变成小小的字母a。

小数点王国里居住着无限循环小数,零国王的国家里,发生了许多奇妙的事件。

数学王国可真奇妙,它让我了解了方程,让我懂得了有理数、无理数,偶数、奇数,更让我懂得了生活中处处都离不开数学。

此外,我还认识了相亲数。220和284就是一对相亲数。220的所有真因数相加就是284,284的所有真因数相加就是220。相亲数让我知道了:你中有我,我中有你,相亲相爱,永不斗争。

看了这本书,我了解了数学的许多奥秘,数学在我眼里变得更奇妙了,我对数学的兴趣又增加了一层。

篇八:《奇妙的数王国》读后感

昨天,妈妈送给了我一本书,叫做《奇妙的数王国》,我先看了这一篇《一场莫名其妙的战争》。

这一篇故事讲的是:弟弟小华和哥哥小强听到了枪炮声,就跑到了山顶上,他们看到有两支军队正在打架,一支军队穿着红色军装,他们胸前都有一个数字,这些数字都是偶数,另一支队伍穿着绿色军装,他们胸前也都有一个数字,但是,这些数字都是奇数。这时,小强和小华听到草丛里有人哭泣,于是小强就扒开草地一看,有一个衣着华丽的胖老头,他就是正在哭泣的人。

小强发现这个人胸前的数字是0,就以为他是0号,其实那个人告诉小强他就是0,那个人就是零国王。这时,响起了嘹亮的军号声,接着,偶数队伍中亮出了一面大红旗,突然,出来了一位军官,他的胸前写着一个“2”字,他就是偶数军团的2司令,在奇数这边也有一个军官,他的胸前写着一个“1”字,他就是奇数军团的1司令。这时,1司令和2司令已经让战斗进入了高潮。

其实,1司令和2司令是零国王的左膀右臂。这时,小强就问零国王:“是不是最小的正整数就能当司令?”其实不是这样的,1司令和2司令都有一种很特殊的能力。2司令逼着1司令和零国王把偶数叫做男人数,把奇数叫做女人数,可1司令和零国王都不同意,2司令这下可发火了,他就让战争继续开始。

篇九:《奇妙的数王国》读后感

寒假里,我和妈妈一起读了李毓佩教授写的《奇妙的数王国》这本书,这是一本数学童话故事书。我很喜欢这本书,妈妈也说写的很好。

这本书一共有10个故事,都和数学有非常密切的关系。李教授用讲故事的方法把枯燥的数学知识讲的深入浅出,读起来轻松自如。

我最喜欢“鹰击长空”系列中的“空中大决战”、“鸦鸡搏杀”和“最后一战”这三个故事。它们讲了小鹰阿尔法、褐马鸡跟秃鹫、秃鼻乌鸦和红脚隼之间的战斗。其中我印象最深的是阿尔法和秃鹫的最后一战:阿尔法厉声说到:“我让你两招儿,你现在投降还为时不晚,不然的话,我要在你身上啄许许多多的洞!”“啄洞?”秃鹫问,“你准备啄多少个洞呢?”阿尔法说:“在你头和背共啄4个洞,在头和腹共啄6个洞,在背和腹共啄8个洞。你算算一共啄几个洞?”秃鹫算了半天也没算出来。“这个容易算。”阿尔法说,“头+背+=4,头+腹=6,背+腹=8。三个式子相加有2(头+背+腹)=4+6+8=18,所以头+背+腹=9。不多,只有9个洞。”秃鹫吓得一缩脖子,他自言自语地说:“不成,我和他拼啦!”秃鹫煽动翅膀加速向阿尔法冲去。阿尔法缺身体腾空,飞到了秃鹫上面乘势在秃鹫背上狠狠啄了一下。“砰”的一声,秃鹫重重地摔在地上,再也没有爬起来。

这本书写得太精彩啦!看完它让我明白,原来我认为枯燥无味的数学竟然变得如此有趣,让我在愉悦中掌握很多数学知识。虽然有些知识我还没有学到,不是很明白,但我依然喜欢这本书。我也很喜欢和妈妈一起读书的时间,看到好笑的地方,我们会一起哈哈大笑,我还会继续和妈妈一起读书的。

篇十:《奇妙的数王国》读后感

我最近看了一本非常有趣的书,是《奇妙的数王国》作者是让我们尊敬的李毓佩教授,这本书主要让我们知道数字的作用和数字在生活中是不可缺少的东西。

这本书是由一个个小故事组成的,而每个小故事都有着大道理,就说《神秘数》的故事。神秘数就是a,故事通过假5和真5都说对方是假的,让数居民们来判断谁是真5,结果——五、1/五、0。1都无法辨认。——5跳进来,其中的一个围着——5转了一圈,变成了两个——5,它又围着无理数π转了一圈,变成了两个π,大家议论纷纷:“看来这个坏数是一个本领高强,变化莫测的神秘数。”故事的结尾用小毅的话,让我明白了代数abc的意思,他解释说:“这个神秘数就是他代数书中丢失的a。所谓代数,就是用abc来代替具体的数。”通过这个故事,告诉我a可以表示正数,又可以表示负数,还可以表示0。

这本书 用少年儿童喜闻未见的童话故事形式,将抽象,枯燥的数学知识讲的深入浅出,读起来轻松自如。这本书不仅我喜欢看,连我的妈妈也喜欢看。

喜欢的话,朋友们有空也去读一下吧!

数学文化读后感1

上一学期,就断断续续地在阅读北京东路小学张齐华老师的《审视课堂:张齐华与小学数学文化》一书,假期中更是再次认真拜读了一遍。作者张齐华是一位年轻的教师,已经得到众多名家的认可,也受到广大老师的赞同。张齐华老师致力于在实践层面还原数学的本来面目,演绎数学的文化魅力,展现数学的意趣与价值。

张齐华老师的教学,给人以惊奇之感,有方法的领悟、思想的启迪、精神的熏陶。设计自然流畅、环节处理细腻、构思巧妙魅力、教学到位厚重,很是值得我学习。

张老师的座右铭“不重复别人的,更重复自己”,才让他不断地思考、不断地创新。《圆的认识》一课,在准备时“由外而内”的跨越,让我看到张老师在新一轮《圆的认识》的探索与实践,尽管困难重重,但张老师坚信:路总会重新走出来的,只要你愿意去开辟。在思考后一个个问题的出现,张老师坦然面对静心解决,使《圆的认识》一课再次呈现了一些别样的意味。看着实录,就像走进了张老师的课堂,俨然像在品一杯好茶,只有静心悟道才是至理。

张老师的《交换律》坚信了数学向着纵深处开掘的至理,读这份案例为其深度和细腻而震撼。对数学文化的追求正是本节课的显著特色,这种数学文化特质不仅外释为一份感性的素材,更内蕴成一种理性的思辨。“猜想—验证—猜想—验证—猜想”犹如泛起涟漪的思维波,思维的确定性、变通性、辩证性、得以相互印染,这种质辩的深入性正是我们孜孜以求的教学本质内涵和教学价值取向。《认识整万数》一课,让我了解到张老师是如何破解数学知识内在的结构的。

新颖的教学设计因为有了教师对教学内容本身的深刻理解作支撑,而获得了更加丰富的内涵。精彩的四十分钟,来自于课外日日夜夜,来自于教师对教材内容和数学知识结构的深入把握,对数学规律方法的深层次揣摩,更重要的'是,对学生已有知识的调查了解。

张齐华老师带给我们的不仅是一节课、教学方法与理念,还有对教育、对专业的执着追求,感受到一名数学教师在艺术王国里演绎精彩的真实历程。张老师的教育理念给我指明了教学的方向,让我学习如何研究我们的数学,如何让我们的数学更有数学文化的味道。

数学文化读后感2

在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。

众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。

读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!

数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。

从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。

数学文化读后感3

在没有读这本书之前,可能很多人都会觉得数学可能只有那些对抽象思维特别感兴趣的人才会去研究,才会去思考。数学与我们非常遥远,在我们的生活和文化观念中,数学最多起到为我们日常生活服务的作用,至于数学本身,无法给我们带来任何的快乐和满足。

如果您读完了这本书,您的上述观念无疑将发生根本性的转变。本书作者从历史的角度,详细地为我们描述了数学如何在与各种文化、思想和人类的旨趣互动的背景下产生、发展和成熟的。

对于数学的发展而言,从古希腊开始,就和人对美的追求,对灵魂的解放联系在一起,而到了近代科学,数学不仅和科学的发展联系起来,而且也为西方文化的发展,文明的进步,作出了许多贡献。而到了现代,数学所起的作用可能与我们更密切,当一般人极力逃避数学的时候,我们在生活中的各种行为和选择,却往往受到数学的影响,如概率统计在选举和天气上的作用,概率对决定论的破坏以及对人类自由的维护,等等。

本书作者没有将对数学与西方文化的关系的论述停留在空洞的哲学空话之中,相反,他从数学产生以来西方文化对数学发展的影响,以及数学如何反过来影响西方文化的各种具体的细节,用他生动的语言给我们再现出来,更难得的是,当涉及到许多哲学上的问题的时候,他既没有像一般科学史学家那样回避或忽视哲学问题和科学的联系,另一方面又能够以清晰的语言尽可能的把握住哲学的真正的观点。虽然有些地方依旧存在偏差或简化,但对于一个数学史学家来说,实在已经很不容易了。

通过本书的精彩论述,我们也可以看出,数学的发展单纯依靠实用的态度是不行的,如果数学家无法从数学研究中获得乐趣,那么,就会像古罗马那样,数学的传统迅速衰竭。而要让人能够从数学中获得乐趣和激情,那么惟有在合适的文化的土壤中,才是可能的。

而对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产物和文明成果,在一个人运用数学进行思维的过程中,所锻炼的不仅仅是他的思维方法,更重要的是,他的许多观念也会发生变化,他会对伦理上的决定论和非决定论,产生新的认识,从而更大和更深刻的领悟人类的自由,他会了解所谓的客观的审美标准是什么,并意识到数学中存在的和谐、对称之美的本质及其独特性,他甚至会根据自然的数学化来重新认识和领会世界,并从而为之高声赞叹。

这本书揭示了数学世界中最引人入胜的一面,相信大多数人都能从这部书里面领略到数学对人性以及人的生活的魅力的。

本文由qingshulin发布,不代表倾述林立场,转载联系作者并注明出处:https://www.qingshulin.com/duhougan/show-35485.html

联系我们

15932669617

在线咨询:点击这里给我发消息

邮件:381046319@qq.com

工作日:9:30-18:30,节假日休息

QR code