1. 倾述林首页
  2. 读后感

智能商业读后感2000字集锦66条-读后感

当阅读完一本名著后,大家心中一定有不少感悟,让我们好好写份

曾鸣教授是我做战略的诸多老师之一,他关于战略的论述,一度是我反复揣摩学习的教材。

阿里巴巴是一家以战略见长的公司,能够在这样一家公司任参谋长,肯定得有几把刷子。

马云是个"大忽悠",能让马云欣赏并邀请加入阿里,斯人功力可见一斑。

刚巧,我主要的工作,也是战略设计。于是乎,我就关注了"曾鸣书院"公众号,下载了"湖畔"APP,也收听了曾教授在得到的"智能商业二十讲".

自曾老师宣布要写这本书开始,我就一直关注着这本书的进程。先是得知这本书的英文版本已经出了,无奈我英语差,不能先睹为快。后又获悉这本书由中信出版集团出版,于是就在中信的购书小程序上预定了这本书。本以为这本书要等很久才能收到,没想到才过几天,就到手了。(截至目前,京东还没上架这本书的中文版。)

书是昨天下午到的,刚到手,就一口气看了一半。

这本书对我的帮助非常大。我就在做关于公司的战略计划,也在做公司的智能系统建设。这本书和我的很多想法不谋而合,让我引以为豪;另外,这本书还讲了很多我没注意到的问题,给了我不少启示。我是一边看,一边和公司的实践比较验证,偶有所感,就随笔记录。有些地方看得茅塞顿开,有些地方看得拍案叫绝,有些地方看得一阵后怕——怕什么?怕要是没看到这本书,自己岂不是犯了大错?

——真是开卷有益——尤其是开高人的卷!

《智能商业》这本书主要讲的就是智能商业。曾教授说,这是未来的商业范式。

智能商业的落脚点在"智能"二字。这两个字将智能商业与非智能商业区别开。意思是:符合智能商业逻辑的`商业模式是智能商业,不符合这个逻辑的,是传统商业;智能商业代表了未来,如果你的商业模式与智能商业无关,那么很可能你就与未来无关。

这倒不是危言耸听。

那么,智能商业的智能主要体现在哪里呢?曾教授总结是:网络协同+数据智能。

什么是网络协同?我的理解是,你要用互联网技术构建一张网,将你的产品和服务搬到线上来(或者至少要有和线上交互的界面),然后把整个服务流程(产业链)的参与者也搬上来,让参与者们在线上自主办公、协同作业。当参与的角色足够多,每个角色的用户数足够大,在线协同作业的频率足够高,这个协同网络的包容性、自生性就足够强。

像蜘蛛一样先织一张网,然后把所有参与者一网打尽,这些参与者通过网络协同作业,会不断编织这张网,将网的深度和广度都极大地延展。这是一张可以自生长的网,有多少用户涌入,就有多少个节点,有多少个节点,这张网就有多大。这张网几乎可以无限延伸。它不是物理世界,它是互联网世界、信息化世界,是新的社群组织形态。

以上是我对协同网络的粗浅理解。那么,什么又是数据智能呢?

我理解的数据智能是供给链智能化。

怎么讲?

所有商业的原点,都是用户需求,不同的生产力阶段有不同的供给系统。这里面,用户的需求是相对恒定的,是所有商业行为的目标,但是供应能力不同,所能提供的解决方案就不同、方案的成本不同、满足用户需求的程度也不同——很多需求不是说你有了解决方案用户才有,而是因为你没有解决方案所以这个问题一直得不到解决用户也就不奢望解决了——另外,很多需求不是原生性需求,而是基于解决方案衍生出来的需求——比如手机贴膜不是原生性需求,手机才是原生性需求;或者说手机不是原生性需求,准确讲,手机应该是一种解决手段,用户需要入网联系进行信息互通才是需求——我们经常犯的错,就是错把手段当需求,不能从原点出发去创新。

绕远了。扯回来。

工业时代生产力的特征是批量生产、标准化。这时候能供给的是大批量的标准化产品。满足的是用户对产品的普遍需求,不是个性需求——记住个性需求是一直存在的,只是当时的供给能力只能满足小部分人的个性定制需求。随着工业化的不断发展,标准产品进入了产能过剩的阶段,用户也进入了标准产品信息泛滥的时代,这时候的市场矛盾,变成了用户个性化需求的增长和市场个性化定制能力薄弱之间的矛盾。本质上讲,是机械化工业生产形式无法满足用户个性化的需求。

这个矛盾成了我们这个时代亟需解决的问题。

怎么办呢?答案就是数据智能。

数据智能是用互联网技术重构供给链系统,让高效的柔性生产成为可能,从而满足用户个性化的定制需要。

如何满足?

首先是万物互联,一切在线。也就是所谓的物联网(IoT)。物联网的意义在于所有产品都成了数据终端:既是数据输入终端也是数据输出终端,更是人机交互终端。在物联网的前期,你至少要开发出一个界面,让你的产品或服务能够与用户互动。这个环节,曾教授讲叫产品化。

有了交互终端,第二步是一切行为数据化。所有的动作,行为,都可以成为数据的字节,被储存下来。这个数据有类型的数据,更有个别的数据(数据库建模时建的表单不同,数据类型就不同)。这些数据你不用它,它就毫无价值。但你只要用它,它就变成了财富。最重要的是这个财富不是消耗品,可以无限复制,越用越有用。

将用户的一切行为数据化,这个在技术上并不难——只要联网在线,用户只要触网,就会形成数据。只是一般人没有注意到这个动作的意义,所以在系统开发的时候,没有开发并迭代优化这部分功能。

数据化以后,是建立算法。算法就是建立数据规则,程序指令。什么样的数据触发条件(输入加上数据分析)会形成怎样的输出,这是算法逻辑。数据量不大,分析维度不多,这个事情就简单。但当数据维度足够丰富,数据量足够大,算法足够多,运算量足够大,这时候,就不是人力能搞定的了,只能求助于机器运算。而且一般的机器作业还不行,得借助云计算的力量。

这样耗心费力的运算,目的何在?目的在于给协同网络的每个参与者更好的体验,满足其个性化需求,让其可以高效决策高效作业。

协同网络是一张横向铺开的网,网络里的每个参与者都是这张网的服务对象,没有数据智能的协作,这些参与者的作业是笨拙的,协同是低效的,有了数据智能,网络的参与者才能真正受益,体现出智能商业的用户价值

所以曾教授讲,协同网络和数据智能是构成智能商业DNA的双螺旋,缺一不可。有了这两个螺旋,你的商业模式就是智能商业,没有,就是传统商业。最后赢的,不是新的,是先进的。智能商业代表的是先进的理念和先进的生产力。革故鼎新,变革的阀门早已开启,唯有洞悉未来的发展趋势,才能提前布局,捕捉未来。

未来还没来,但是通往未来的因已经种下。我们有幸生在这个时代,可以参与或见证这个时代的变革。想想二十多年前中国的互联网什么样,再想想现在中国的互联网什么样,你还会觉得未来很遥远吗?

面向未来,掌握事物发展的原理,因缘聚合的原理,这样我们才有机会成为未来的开创者。

感谢曾教授!

《智能时代》读后感一

这本书内容比较浅,基本属于讲故事、走马观花的那种。作者文笔、见识、阅历是很牛,本书没有体现出来。

唯一觉得亮点的地方在于,以前不太知道大数据和人工智能具体关系,这本书简单地讲解了一下。

机器智能,传统上来说是指机器能够像人一样思考,去解决问题,而由于人类解决问题并非是在当下的场景下学会解决当下那个场景的问题,有很多时候是应用了其他方面的知识来解决这个问题,所以在迁移能力这方面,机器要学会“人”的思考很难。那么大数据是怎么与机器智能相联系的呢?另一条发展机器智能的方法,就完全摒弃了“像人思考”这一条路,而是直接对准“解决问题”这一终极目标。比如说翻译,以前的思路是让机器理解各种语法,现在则不需要机器去理解语法,而是直接去“学习”十几万句用语,用量变来抵达质变。也就是说,当见识过越来越多的用语时,翻译的准确性也会不断提高。

《智能时代》读后感二

总的来讲,本书主要内容是在探讨基于大数据的机器智能是如何发展的、将如何影响人们生活的方方面面以及如何应对。

大数据给世界带来的改变很深刻,最深刻的是思维方式的转变——从因果论的机械思维到相关性的相关性思维。这里转变的不只是解决问题的手段——如今我们有能力在全集上分析问题,也终于有能力在全集的基础上精准刻画群体侧面画像,转变的还有看待问题的方法——我们不再是“小心假设,大胆求证”,而是“减少假设,数据自明”。这种转变实际上使得机器智能具备了成为公共设施的基础——不必要所有人都懂机器智能是如何工作的,对于使用者来说只需要明白有这样一个工具可以在数据全集上找到恰当的结论即可。因此,这会迅速引起一场商业革命。

实际上,这场革命已经开始:在书本中已经列举了包括酒吧、冰箱制造商在内的传统行业利用大数据的手段改善经营状况。但是,还有更多的行业在探索如何将数据有效整合起来探索新的模式——首先是数据的获取问题,寻找有效的获取数据的方法可能不是一拍脑袋就想得到的;其次,如何从这些数据中发现价值依然需要一个指导方向;最后,如何利用数据发现的规则设计更合理的模式。

书中另外一个精彩内容是最后一章——论述了智能革命带来的正面影响和负面冲击。我认为作者实际上是问了这样一个问题:智能革命大大解放了生产力,大大促进了生产,只需要更少的人就能够养活全世界,那么剩下的人怎么办?作者通过论述第一、二、三次工业革命的历史进程,得出来的结论不容乐观——只有通过时间的作用才能使革命带来的.巨大的生产力解放得到释放。我们很不幸地处于这个历史进程,我们也很幸运地处于这个历史进程。

所以整本书,可以说是一本科普的书,读完全书能对当下最时髦的概念——大数据、机器智能、区块链等有进一步的理解,尤其是大数据。但是我觉得更像是一本宣传鼓动的书——因为他描绘了两个世界,一种是参与到革命的进程中,跟上历史的车轮向前,另一种则是抗拒革命,被历史抛弃——这两者之间的差别,不可以云泥计。至于事实上是否真的会有这么严重,这个就仁者见仁了,只不过历史告诉我们,至少前三次是这样的,如果抱有怀疑,最好祈祷太阳底下会有新鲜事。

至于革命已经发生,这是毋庸置疑的。当然,这是读本书之前就已经知道了的。实际上,很多人都已经知道——置身在一个全社会都在讨论大数据的环境下,很难不去想大数据会如何影响世界。本书的效用只是在于让读者知道这个过程是如何的不可抗拒。

《智能时代》读后感三

人工智能是未来10年可期有大发展的领域,也是我们从事数据行业的职业愿景。看我这本书,更加坚定这是一个可期,有意思的方向。下面是我读这本书的过程中,产生的对于数据分析和应用的一些理解和总结。

基本思路

经典思路:目前在做数据分析时,采用的是传统的逻辑推理的分析的思路。先提出问题,再通过严谨的逻辑推理进行验证,解释商业问题。

新思路:尝试使用相关性进行数据挖掘分析;就是数据挖掘的一些技术,比如聚类、决策树、随机森林等高级统计模型。这种思路做出的东西,一般而言是技术门槛较高、解决经典思路无法解答的问题,也符合当前流行的大数据思维、人工智能思维。新思路的处理问题逻辑,先有相关性分析,找出导致问题的相关性因素,然后再解释背后的商业逻辑。

适用范围

经典思路:符合人脑的思维模式,由A—>B—>C的逻辑顺序。在解决小而美的独立case时,效率高。比如,“为什么今天某个页面的转化率突然升高啦”这类的问题,通过逻辑推理,一步一步下钻,可以很快定位原因。

新思路:这是AlphaGo下围棋是采用的思路,决策nextmove是因为nextmove对最终赢得棋局概率最高。这是一种结果导向的思维,将智能问题变成了数据问题。AlphaGo不需要知道如何布局,只关注每一次的落子都在提高最终胜利的概率。这种思路可以解决目标明确且影响因素众多的决策问题。

智能时代

在《智能时代》一书中,作者系统地讲述了大数据和智能革命相关的知识,对我触动最大的是大数据引起的思维革命、大数据对商业的影响以及智能革命对未来社会的影响这三部分的内容。

思维革命

工业革命后人们形成的思维方式是机械思维,即确定性思维。我们可以通过找到特定的模型(公式、定律),找出事物之间的因果关系,而且发现的规律往往是放之四海而皆准的。

然而这个世界是不确定的。首先当我们对世界的了解越来越细致之后,我们会发现影响世界的变量其实非常多,已经无法通过简单的方法或者公式计算出结果。

然后通过量子力学中的测不准原理,我们可以知道不确定性是宇宙的一个特性。

面对不确定性的世界我们该怎么办呢?

香农在信息论中借用热力学里熵的概念,他用熵来描述一个信息系统的不确定性。香农指出,信息量与不确定性有关:假如我们需要搞清楚一件非常不确定或一无所知的事情,就需要了解大量的信息。这是一个全新的方法论:信息论建立在不确定性基础上,而想要消除这种不确定性,就要引入信息。要引入多少信息,则要看系统中的不确定性有多大。

在我们无法确定因果关系时,数据为我们提供了解决问题的新方法,数据中所包含的信息可以帮助我们消除不确定性,而数据之间的相关性在某种程度上可以取代原来的因果关系,帮助我们得到我们想知道的答案,这便是大数据思维的核心。

大数据与商业

从工业革命开始,几次主要的技术革命都遵循相似的规律。首先,是大部分现有产业加上新技术等于新产业。或者说原有产业需要以新的形态出现。其次,并非每一家公司都要从事新技术产品本身的制造,更多的时候它们是利用新技术改造原有产业。这次以大数据为核心的智能革命也不例外,我们将看到它依然会延续这两个特点。每次技术革命都会诞生新的思维方式和商业模式,企业只有在思维上跟上新的时代,才能在未来的商业中立于不败之地。

智能革命和未来社会

大数据导致机器革命的到来,这对未来社会的影响不仅仅存在于经济领域,而是全方位的。尽管总体上这些影响是正面的,从长远看会使我们未来的社会变得更好;不过,和以往的技术革命一样,智能革命也会带来很多负面的影响(个人隐私、失业率等),特别是在它发展的初期,而这些影响很可能会持续很久。

任何一次技术革命,最初收益的都是发展它、使用它的人,而远离它、拒绝接受它的人,在很长的世界里都是迷茫的一代。在智能革命到来之际,作为人和企业无疑应该拥抱它,让自己成为那2%的受益者;而作为国家,则需要未雨绸缪,争取不要像过去那样每一次重大的技术革命多伴随半个多世纪的动荡。

在我们还没有经历过机器在智能上全面超越人类的时代,我们需要在这样的环境里学会生存。这将是一个让我们振奋的时代,也是一个给我们带来空前挑战的时代。

作者在书中对很多基础概念和技术发展历史都有较详细的讲解,也列举了很多生动有说服力的案例。在看这本书之前也在很多地方了解过关于人工智能、大数据等方面的案例和知识。但远没有看过书后如此深刻的认识,所以推荐大家还是阅读原书。书名虽然看上去是与科技相关的,实际上与每个人都相关。提前接触和运用新的思维与新的技术也许不能保证你成为前2%的人,但至少可以让你在过程中拥有更多的机会和成功概率。

愿大家对新事物保持好奇心和热情,拥抱智能时代,为成为前2%的人而努力

智能时代读后感[篇二]

通过阅读《智能时代》这本书,使我对大数据和智能革命发展的起源、现状和未来有了初步了解,并对书中提到的“变智能问题为数据问题”的可行性,以及大数据可能带来的巨大改变有了更深的认识。

从古至今,人类社会的发展依赖于人的逻辑思维能力,强调事物发展过程中的因果关系。而在大数据时代,事物的发展过程呈现出了“相关”关系。为什么亚马逊会把男性护肤用品和古典音乐一同推荐?这正是通过大数据的相关性得到的结论,这样的组合能实现更好的商品销售。

可以想象,当苗木的价格指数、价格波动曲线形成,再进一步,将畅销品种、规格及生产中的浇水、施肥、出圃、采购都通过互联网形成数据,通过数据库的积累进行数据分析,将可以在很大程度上指导苗圃经营的方方面面,从而降低苗木经营监管成本。

对于园林行业而言,大数据的意义不在于掌握庞大的数据信息,而在于对这些有意义数据的专业化处理,并且更多的偏向于专业人员的思维和意识的更新。以往的工作中,我们往往凭借

目前,园林行业的网络信息平台还不完善,大数据的收集还有一定的局限性。但我们必须引以重视,着手探讨如何利用现有的资源来迎接智能时代的机遇。相信在不久的将来,大数据能够在苗圃的发展中得到合理的应用。

智能时代读后感[篇三]

本文由qingshulin发布,不代表倾述林立场,转载联系作者并注明出处:https://www.qingshulin.com/duhougan/show-37154.html

联系我们

15932669617

在线咨询:点击这里给我发消息

邮件:381046319@qq.com

工作日:9:30-18:30,节假日休息

QR code