1. 倾述林首页
  2. 读后感

数学史概论读后感集锦90条-经典语录

《数学史概论》读后感1

著名数学家陈省身曾说过:“了解历史的变化是了解这门科学的一个步骤。”李文林先生的《数学史概论》即为我们了解数学提供了重要途径,本书系统全面,且一反寻常论述类著作的晦涩,理性与趣味并举,严谨与生动兼备,尽显数学的神圣与魅力。成书的初衷是为一些高等院校的数学史课程提供一个参考范本,但事实上,本书除了为数学专业师生提供参考外,也在不同程度上满足了对数学史感兴趣的各类读者的需求,自2000年8月出版第1版以来,深受广大读者的推崇。

初读此书时,我还是一名大三的学生,一次偶然的翻阅,为我打开了新世界的大门,那些陌生的、新奇的领域逐渐豁然开朗。原来数学的演化经历了一个漫长而又曲折的过程,从远古到现代,它不断发展完善着;原来每一个看似简单的定理都承载着一个不为人知的故事,它简单却厚重;原来数学是一门理性却并不冰冷的学科,它来源于生活而又高于生活,鲜活且生动。正如李文林先生在书中所言“数学的发展与人类的生产实践和社会需求密切相关。对自然的探索是数学研究最丰富的源泉。但是数学的发展对于现实世界又表现出相对的独立性。一门数学分支或一种数学理论已经建立。人们便可在不受外部影响的情况下,仅靠逻辑思维而将它向前推进。并由此导致新理论与新思想的产生。”它是一门科学,也是一种语言,有自己的文字符号,有自己的内在逻辑体系。它从无到有,从零散到系统,从微小到庞大,它所经历的每一次危机,又由此所取得的每一个重大突破,让我为之震撼与景仰。

如今我已是一名入职两年的数学教师,再看《数学史概论》,又能从中汲取许多教学灵感。学生对数学没兴趣,认为数学枯燥,学无所用,一方面是因为多年被数学作业支配的恐惧,另一方面也来自于他们对数学的不了解。倘若在一个孩子还小的时候,就依据他的认知水平,给他讲一些数学家的和数学发展中的逸闻趣事,例如,泰勒斯测量金字塔、阿基米德给国王测量王冠体积、祖冲之父子与圆周率、数学王子高斯与其卓越的数学天赋、费马与费马大定理、理发师悖论与芝诺悖论等等,那么,在日后的数学学习中,他也许不会对数学产生抵触情绪。在学习到相关内容时,看到一个个熟悉的人名,便会自然而然地产生亲切感和兴趣,学习起来事半功倍。

而作为高中数学教师,我们也可以将数学史融入平时的数学教学中,让学生在数学学习过程中,不仅接触到冷冰冰的知识,还接触到知识背后所蕴藏的数学家的情感和意志,体味其中的数学思想,感受到数学的文化魅力。比如在必修一“函数与方程”的教学中,可以给学生讲,从塔塔利亚到阿贝尔和伽罗瓦的方程发展史,让学生明白利用“函数与方程的关系”求解方程近似解的意义。在必修二解析几何的教学中,可以根据笛卡尔的“通用数学”思路,引导学生发现:解决几何问题的一大途径,是将它转化为代数问题。

数学是一门历史性或者说是累积性很强的学科,我们学习数学的过程应与人类认识数学的顺序一致,这样更符合我们的数学认知规律。学习数学的道路上遇到的每一个问题,或许都有数学家为它绞尽脑汁过。读数学史,可以帮助我们了解数学演化的真实过程,体味数学思想的诞生与发展,可以使我们从前人的`探索和奋斗中汲取教训和经验,获得鼓舞和增强信心。那些悠悠长河中的数学人所做的每一份努力,都是为了让我们可以站在他们的肩膀上,更清楚地认识这个世界。

数学是各个时代人类文明的标志之一,是推进人类文明的重要力量,数学史不仅是我们这些数学相关人士需要了解的,任何一个关心人类文明发展的人都值得了解。

《数学史概论》读后感2

此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。

数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。

作者是按如下的数学史分期为线索进行展开论述的:

【第1句】:数学的起源和发展;

【第2句】:初等数学时期;

【第1句】:古希腊数学,

【第2句】:中世纪东方数学,

【第3句】:欧洲文艺复兴时期。

【第3句】:近代数学时期;

【第4句】:现代数学时期。

此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革......

在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。

最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。

我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。

《数学史概论》初中读后感 篇1

当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。

我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是 【第17句】:18世纪的高等数学。

这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。

而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。

由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

《数学家徐利治的故事》,知道了徐老先生在数学上为祖国做出了贡献,他写的许多论文在国际上引起了反响,他还培养出一批成材的学生。

徐老先生为什么能成为数学家?为什么能做出这样大的贡献?原因之一,就是他小时候不怕困难,刻苦学习。文章里写道:“他在读书时常把伯父给他的午饭钱省下来,用来买书和买练习本,为了节省用纸,他常用手指在睡觉的凉席上练字,夜深人静,同学们早已进入甜蜜的梦乡,徐利治却来到走廊,在灯光下认真地学习。白天,他泡在图书馆里用馒头、白开水充饥……”可以看出,徐老先生小时候学习条件很不好,连买书、买练习本的`钱都缺乏,只好节省午饭钱,然而,他勤奋学习,并不因学习条件差而气馁。在我们这时代,家庭生活比较富裕,很多家只有一个孩子,零花钱比较多,这些钱我们不是去打电子游戏,就是去买好吃的。平时,也很浪费,一张纸不是写几个字就扔了,就是折纸飞机玩,一点也不知道节省。

在学习上,现在很多同学都不认真学习,学习目的不明确,我也是这样,做题稍微遇到一点困难就气馁了。

我们的学习态度和徐老先生那种废寝忘食的学习精神相比,真有十万八千里的差距。

《数学史概论》初中读后感 篇2

此书是《数学史教程》的第二版,这本书还得到了诸多数学界有望人士的高度赞扬。嘉兴学院名誉校长,国际数学大师陈省身先生为此书惠赠了墨宝:了解历史的变化是了解这门科学的一个步骤。此外,吴文俊院士也在百忙中赶写了读后感,对《数学史概论》一书在数学史学科研究上的肯定,并称之“翻阅此书都会开卷有益并感到乐趣”。

数学是一门历史性或者说积累性很强的学科,重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有理论,而且总是包容原先的理论。所以说数学是历史最悠久的人类知识领域之一。因此也有数学史家认为“在大多数学科里,一代人的建筑为下一代所摧毁,一个人的创造被另一个人所破坏,但是有些学科就像数学,每一代人都在古老的大厦上添加一层楼”。

作者是按如下的数学史分期为线索进行展开论述的:

【第1句】:数学的起源和发展;

【第2句】:初等数学时期;

【第1句】:古希腊数学, 【第2句】:中世纪东方数学, 【第3句】:欧洲文艺复兴时期。

【第3句】:近代数学时期;

【第4句】:现代数学时期。

此书从上古的巴比伦、希腊、中国、印度、阿拉伯,以至当代数学,对于数学的贡献与影响都有中肯的评论和解说。在原始社会,从原始的“数觉”到抽象的“数”概念的形成;随着计数的慢慢发展,出现了石子记数和结绳记事等记数方法;接着经验算术与几何法的发现;再在此基础上加工升华为具有初步逻辑结构的论证数学体系;随之发展而来的便是近代数学;之后数学的发展更是迅猛:微积分的创立,代数学的新生,几何学的变革……

在很多人看来数学总是那么枯燥乏味的,没有多大的兴致看完这本书。而此书中作者不仅对数学史实有详尽而忠实的介绍,还借助各种例子来让读者理解,甚至加入了很多生动有趣的故事及奇闻轶事,例如阿基米德解决皇冠难题的故事,牛顿苹果落地的故事等等。读之趣味盎然,大大增强了书本的可读性。书中还写到了很多著名的数学家,并就其学术成就做了概括的介绍,尤其重要成就,不惜花了很多篇幅以详细说明。

最后,作者还就数学与社会的关系及两者互相之间的影响发表了论述。他精辟地阐述为:数学的发展与社会的进步有着密切的联系,这种联系是双向的,即一方面,数学的发展依赖于社会环境,受着社会经济、政治和文化等诸多因素的影响;另一方面,数学的发展又反过来对人类社会物质文明和精神文明两大方面的影响。接着,作者从数学与社会进步,数学发展中心的迁移,数学的社会化三方面进行了展开说明。

我想我本是数学系的学生,多少是得对数学史有所了解。虽没有过于仔细的拜读,但我想通过这次翻阅还是受益匪浅的。

你知道毕达哥拉斯何许人?

你能列举《几何原本》与《九章算术》的不同风格?

你能列举几位著名温州籍的数学家?

这些问题让我们学了九年数学的学生不知所答,但随着上学期对《数学史选讲》进行整合学习,对这些问题逐渐明朗与了解。发现数学的发展伴随着人类的发展,上下五千年的人类文明蕴藏着十分丰富的数学史料。通过学习让我们更加深入地了解数学的发展历程,历经数学萌芽期、初等数学时期、变量数学时期、近代数学时期、现代数学时期,这如同胎儿的发育过程,大体要经过从单细胞生物到人类的进化过程,要经过类似原生动物、腔肠动物、脊椎动物、灵长类等各阶段,最后才长成人类的样子。作为人类智慧的结晶,数学不仅是人类文化的重要组成部分,而且始终是推动人类文明进步的重要力量。

在近一周的数学史学习中,我感触颇深,适逢老师布置大家撰写一篇学习体会,现报告如下:

体会一:懂得历史:从欧几里得到牛顿的思想变迁

历史使人明智,数学史也不例外。古希腊的文明,数学是主要标志之一,其中欧几里得的《几何原本》闪耀着理性的光辉,人们在欣赏和赞叹严密的逻辑体系的同时,渐渐地把数学等同于逻辑,以“理性的封闭演绎”作为数学的主要特征。跟我国古代数学巨著《九章算术》相对照,就可以发现从形式到内容都各有特色和所长,形成东西方数学的不同风格:《几何原本》以形式逻辑方法把全部内容贯穿起来,极少提及应用问题,以几何为主,略有一点算术内容,而《九章算术》则按问题的性质和解法把全部内容分类编排,以解应用问题为主,包含了算术、代数、几何等我国当时数学的全部内容。但是在近代数学史上,以牛顿为代表的数学巨人冲破了“数学=逻辑演绎”的公式,创造地发明了微积分。从中我们可以认识到欧几里得的几何学具有严密的逻辑演绎思维模式,牛顿的微积分具有开放的实践创造思维模式。在我们的'学习中同样需要兼顾严密的逻辑演绎思维与开放的实践创造思维。

体会二:激发精神:数学大师的执着、爱国

学过数学的人应该都知道勾股定理吧!那你知道是谁最早发现的吗?在西方的文献中一直把勾股定理称作毕达哥拉斯定理。他是希腊论证数学的另一位祖师,并精于哲学、数学、天文学、音乐理论;他创立的毕达哥拉斯学派把数学当作一种思想来追求,去追求永恒的真理。你知道被国际公认为“东方第一几何学家”的人谁吗?当我们学校组织高一段的同学去平阳春游,参观了苏步青的故居后,这个谜团才得以解决。而且对苏步青有了进一步的了解,从他身上发现爱国情怀尤其突出,如在极端恶劣的条件下毅然回国,并以严谨的治学态度、宽厚仁慈的胸怀、苦心孤诣的钻研精神激励着学生,于是才有了潘承洞、王元、陈景润等对哥德巴赫猜想的突出贡献,才有了我国在国际奥林匹克数学竞赛上的一枚枚金牌。在我们温州还有很多著名的数学家,如谷超豪、姜立夫、姜伯驹等等,专家分析之所以形成一个庞大的温州籍数学家群体,这与温州的“务实”与“勤恳”的文化传统有着直接的关系。温州人在历史上就以“吃苦耐劳”著称,这种群体性格特征在现代温州商人身上体现尤为明显,而数学家们自然也秉承了这一精神。

体会三:掌握学法:学习之道在于悟

例如,做菜,用同样的材料和调味品,为什么大厨做出来的就比你做出来的好吃?材料都是一样的啊!这说明除材料外,还有一个东西在起作用——就是在做菜的过程中,如何搭配材料,材料的使用顺序,何时使用材料,如何把握火候等。这些东西在起作用。同理数学知识分为两类:一类是陈述性知识(或者说明性知识),是关于事实本身的知识,例如定义、定理、公理、概念、性质、法则、运算律等等,是关于是什么的一类知识;另一类是程序性知识,指怎样进行认识活动的知识。陈述性知识可通过说明、解释、举例等方式达到理解,是可传授的,易掌握的,通过训练是能够牢固掌握的。程序性知识更多地体现在经验,可传授性差,要靠体验、意会和悟性,而体验是要在过程中生成的,需要逐步积累的。数学学习的特点给我们两点启示:1、程序性知识比陈述性知识更为重要。(为什么不会解题的原因) 【第2句】:程序性知识的学习要在应用过程中揣摩,陈述性知识要在训练中加深理解和掌握。

体会四:更新理念:大胆猜想,小心求证

在数学史中,有这样一个游戏:传说在古老的印度有一座神庙,神庙中有三根针和套在一根针上的64个圆环.古印度的天神指示他的僧侣们按下列规则:把圆环从一根针上全部移到另一根针上,第三根针起“过渡”的作用. 【第1句】:每次只能移动1个圆环; 【第2句】:较大的圆环不能放在较小的圆环上面.如果有一天,僧侣们将这64个圆环全部移到另一根针上,那么世界末日就来临了(汉诺塔游戏)。以上的游戏体现了数学中的探索、推理、归纳的思想,合情推理是创新思维的火花,操作探究是创新的基本技能。当面临错综复杂的实际问题时,应能自觉运用数学的思维方式(退到简单入手)去观察和思考问题,并努力寻求用数学解决问题的办法(寻找递推关系)。这种思考方式在解题中非常重要,又如谢宾斯基三角形与雪花曲线:

以上四点体会是我在学习《数学史选讲》后的总结,在学习过程中,我们体会到数学的发展并非一帆风顺,它是众多数学先贤前赴后继、辛勤耕耘的奋斗过程,也是克服困难、战胜危机的斗争过程。了解数学史,对于我们把握数学知识之间的关系和联系,领会数学知识所内含的数学思想方法大有好处。

本文由qingshulin发布,不代表倾述林立场,转载联系作者并注明出处:https://www.qingshulin.com/duhougan/show-71209.html

联系我们

15932669617

在线咨询:点击这里给我发消息

邮件:381046319@qq.com

工作日:9:30-18:30,节假日休息

QR code